Prevalence of Micro-jets from the Network Structures of the Solar Transition Region
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Abstract Filamentary TR structures associated with network jets
IRIS observations in the 13304, 1400A and 2796A passbands have revealed prevalent small-scale jet-like features with (A) __Slitjaw 1330 Intensity () Peaklntensity  (C) Line Width [km/s] N - . ——— LSRR
apparent speeds of ~80-250 km/s from the network structures in coronal holes and quiet Sun regions. Their widths are s = s e o ghetvorise IR couterparta clpiclesTniel 2000

Pereira et al. 2014) and small low-lying loops (Hansteen et
al. 2014) appear to be the dominant structures of the TR.

* Many network jets are likely on-disk counterparts and TR
manifestation of type-Il spicules (De Pontieu et al. 2007,
Rouppe van der Voort et al. 2009), thus providing support
to heating of spicules (De Pontieu et al. 2011, Rouppe van
der Voort et al. 2014).

e ¢ IRIS is likely performing direct imaging of the weak high-
speed upflows inferred from SUMER line asymmetries
(McIntosh & De Pontieu 2009).

* Higher speeds of network jets in IRIS SJI

often ~300 km or less. Many of these jets show up as elongated features with enhanced line width in maps obtained
with transition region (TR) lines, suggesting that these jets reach at least ~10° K and they constitute an important
element of TR structures. These ubiquitous high-reaching jets are likely an intermittent but persistent source of mass
and energy for the corona and solar wind. The generation of these jets in the network and the accompanying Alfvén
waves is also consistent with the "magnetic furnace model" of solar wind. The large speeds suggest that magnetic forces
may play an important role in the generation and acceleration of the network jets. Many network jets are likely the on-
disk counterparts and TR manifestation of type-Il spicules observed in the chromosphere above limb. (Tian et al. 2014)

Prevalent network jets in the solar wind source region
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