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Abstract Using the correlation between the radiance or Doppler velocity and the extrapolated
magnetic field, we determined the emission heights of a set of solar transition region lines in
an equatorial coronal hole and in the surrounding quiet Sun region. We found that for all of
the six lower-transition-region lines, the emission height is about 4-5Mm in the equatorial
coronal hole, and around 2 Mm in the quiet Sun region. This result confirms the previous
findings that plasma with different temperature can coexist at the same layer of transition
region. In the quiet Sun region, the emission height of the upper-transition-region line Ne v11i
is almost the same that of the lower-transition-region line, but in the coronal hole, it is twice
as high. This difference reveals that the outflow of Ne V111 is a signature of solar wind in the
coronal hole and is just a mass supply to the large loops in the quiet Sun.

Key words: Sun: transition region — Sun: magnetic fields — Sun: solar wind — Sun: UV
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1 INTRODUCTION

Solar transition region plays an important role in the origin of the solar wind (e.g. Hassler et al. 1999; Tu
et al. 2005a) and in coronal heating (e.g. Hansteen 1993; Feng 2006). Our knowledge of the solar transi-
tion region largely depends on EUV (Extreme UltraViolet) spectroscopic observations. Since the plasma is
optically thin for most of the EUV emission lines, we can extract information on the physical conditions
prevailing in their source regions from the line profiles (for a review see Mariska 1992 and Xia 2003).

Network structure, which is the basic structure in the chromosphere and manifests itself as bright lanes
in the radiance images of chromospheric lines, can also be seen in transition region lines (Reeves 1976). The
height variation of the network size can be found in Patsourakos et al. (1999) and Tian et al. (2008b). The
transition region emission is considered to originate from funnels diverging with height from underlying
supergranular boundaries (Gabriel 1976), and low-lying loops with lengths less than 10 4 km (Dowdy et
al. 1986). It is further suggested that the funnels can be connected to a solar wind or are just the legs of
coronal loops (Peter 2001).

It has been found that most transition region lines are red shifted (see the reviews by Mariska 1992).
However, a net blue shift of the upper-transition-region line Ne vii1 (A770) has been observed by the
instrument SUMER (Solar Ultraviolet Measurements by Emitted Radiation) on board SOHO (Solar and
Heliospheric Observatory) (Dammasch et al. 1999). The Doppler shifts of transition region lines seem to
have a dependence on the formation temperature (Peter & Judge 1999; Teriaca et al. 1999; Xia et al. 2004).

The Ne v1ii line is very useful for investigating the outflows in the upper transition region. In the coronal
hole, the blue shift of this line is considered to be a signature of solar wind origin (Peter 1999; Stucki et
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al. 2000; Wilhelm et al. 2000; Aiouaz et al. 2005; Xia et al. 2003; Hassler et al. 1999; Tu et al. 2005a).
While in the quiet Sun, large Ne Vi1 blue shifts were also found in the network lanes and considered to
indicate sources of the solar wind (Hassler et al. 1999) or just mass supply to quiet coronal loops (He et
al. 2007; Tian et al. 2008a).

However, disk observations can not provide height information of the radiation and Doppler shift of
EUV emission lines, which is very important when investigating the 3-D structure of the transition region
(Tu et al. 2005b). Thus, we need to develop a technique to find the heights where certain physical processes
dominate. Magnetic field extrapolation is a common way for the solar community to study the magnetic
coupling of different solar processes (see e.g. Wiegelmann & Neukirch 2002). With the assumption that the
magnetic field may be considered as almost force-free at heights of about 400 km above the photosphere
(Metcalf et al. 1995), we have successfully combined the force-free model proposed by Seehafer (1978)
and the EUV observations to study the plasma radiation and flows in the quiet Sun and in the coronal hole
(Wielgelmann et al. 2005; Tu et al. 2005a,b; Marsch et al. 2004, 2006; He et al. 2007; Tian et al. 2007,
20084a,b).

Tu et al. (2005a,b,c) introduced the concept of correlation height of the source of an EUV emission
line. They calculated at different heights the correlation coefficient between the 2D distribution of the line
intensity or Doppler shift, and the 2D distribution of the vertical component of the extrapolated magnetic
field. The height at which the correlation coefficient reaches its maximum was called the correlation height
of the radiation. A possible correlation between the magnetic field and the plasma density (expressible as
the square root of an emission-line intensity as a first order approximation) may also be expected from the
theoretical point of view that the heating flux density (being proportional to the density) entering the loops
is proportional to the magnetic field strength (Marsch et al. 2006; Schrijver et al. 2004).

By using this method, Marsch et al. (2006) determined the emission heights of 12 emission lines with
formation temperatures from 7.4 x 102 K to 3.0 x 10° K, in a polar coronal hole region. They found a
subregion with strong emission located at lower heights, whereas the weak emission appeared to originate
at higher heights. The results suggest that the transition region is highly structured and that plasmas of
different temperatures can coexist at the same height in the coronal hole.

However, such correlation analysis has not been applied to an equatorial region. In this paper, we
analyze a different data set observed in an equatorial coronal hole region and the surrounding quiet Sun
region, and determine the correlation height of each EUV line included in the observation for the two
regions. Our data set covered six strong lower-transition-region lines and an upper-transition-region line,
Ne vii1. Thus, we can provide a direct comparison of the emission heights of transition region lines in the
coronal hole and the quiet Sun.

2 OBSERVATIONS AND DATA REDUCTION

The SUMER data (Wilhelm et al. 1995; Lemaire et al. 1997) analyzed in this paper was obtained from 1997
March 7, 18:00 UT to March 8, 17:42 UT. During this period, SUMER observed an equatorial coronal hole
and the surrounding quiet Sun. The slit 2 (1" x 300”") was used in this observation and kept at a fixed position
centered at solar coordinates X = 0" and Y = 279”. No compensation for the solar rotation was applied, so
the scanning was done by the solar rotation over this period. Since the speed of solar rotation at the pointing
position (X = 0”7, Y = 279”) is about 10” per hour, the scan covered an area of about 235" x 300".
The white rectangle in Figure 1 shows the scanned area in an EIT (Extreme Ultraviolet Imaging Telescope)
image (Fe 1x/x) taken on 1997 March 8, 07:00:13 UT. The selected spectral windows covered six lower-
transition-region lines and one line (Ne v111) formed in the upper transition region: see Table 1. We adopt the
values of rest wavelength given in the Chianti data base, and the formation temperature given in Xia (2003)
and the Chianti data base (Dere et al. 1997; Landi et al. 2006). In each spectral window, 50 spectral pixels
(about 2,&) were transmitted during the 90s exposure time. This data set has already been analyzed by
Lemaire et al. (1999) to study the difference of line broadening in the coronal hole and quiet Sun, and by
Aiouaz et al. (2005) and Aiouaz (2008) to check the variation of line shift from the network cell to the
network center. More information about this observation can be found in the literature.

The standard SUMER procedures for correcting and calibrating the data were applied, which include
local gain correction, flat-field correction, geometrical distortion and dead-time correction. We also aver-
aged the data over four exposures, which greatly improved the signal-to-noise ratio and produced a new data
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Fig.1 EIT image (Fe 1x/x 171A) taken on 1997 March 8, 07:00:13UT. The area scanned by
SUMER/SOHO is outlined by the white rectangle.
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Fig.2 Observed (histogram) and fitted (smooth line) line profiles of N 1v. The dotted and dashed vertical
lines indicate the positions of the rest wavelength and the center of the fitted profile, respectively.

Table 1 Emission Lines Used in This Study

lon Rest Wavelength (angstrom)  Formation Temperature (log K)  Average Doppler Shift (kms~1)
Ne viii 770.428 5.80 -2.5

Ov 760.446 5.35 7

O1v 787.710 5.23 9

O1v 790.199 5.23 9

Sv 786.470 5.26 9

N 1v 765.149 5.15 7

N1 764.351 4.90 7
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set with a pixel size of about 0.95” in the direction of solar X . This new pixel size is almost the same as the
slit width so that the adjacent data of the new set after average are approximately detected from different
positions in the direction of solar X . Along the slit the pixel size corresponds to 1.02 arcsecond (Lemaire et
al. 1999). Thus the pixel size was almost the same at solar X and solar Y after this binning.

Each observed spectrum was fitted by a single Gaussian curve, plus a constant and a linear term de-
scribing the background. Figure 2 shows the observed line profile of N 1v averaged over the whole region
(histogram) and a fitting to it (smooth line). The dotted vertical line indicates the position of the center of
the fitted profile. The line-of-sight velocity of the plasma can be inferred by using the Doppler shift formula
Vlos = ¢(A — Ao)/ Ao, Ao being the rest wavelength, and )\, the observed wavelength of the line (the central
position of the fitted profile in our case), and ¢, the speed of light in vacuum. The Doppler velocity of N 1v
shown in Figure 2 is estimated to be 7 km s—1. The intensity can be calculated by integration over the spec-
trum. Figure 3 shows the intensity images in N 1v and Ne vi1i1. The boundary of the coronal hole, indicated
by the blue dashed line, was determined by hand after an inspection of the intensity image of Ne Vi1 as
well as the EIT Fe 1x/x image. This boundary line is almost the same as that used in Aiouaz et al. (2005)
so that our results and theirs can be directly compared. It is clear that the dark part of the Ne vii1 intensity
image can be well outlined by the boundary line. The contours in the left panel represent bright emission of
N 1v, which clearly outline the network boundaries.

We also estimated the spectral line shift caused by thermal deformations of the optical system of
SUMER, which was discussed in Dammasch et al. (1999), by averaging the residual line centroid posi-
tions across the north-south extension of the slit. Also, the Doppler shift induced by solar rotation was
taken into account by calculating the line-of-sight velocities for all pixels as a function of their nominal
mapping onto the solar disk (Dammasch et al. 1999). We removed these two effects before determining the
Doppler shifts of the spectral lines.

There are no chromospheric lines in the spectral windows, so we can not carry out an absolute wave-
length calibration by using a cold line. Instead, we followed the method adopted by Aiouaz et al. (2005),
and assumed a mean value of the doppler shift for each line over the whole observation region. We took
the values from Xia (2003), in which the results were based on a statistical study. Table 1 lists the value for
each line, negative for blue shifts, positive for red shifts.

Since the SUMER observation lasted for almost 24 hours, during which the magnetic network might
have changed a lot, we can not compare a single magnetogram with the SUMER images. During the time of
the SUMER observation, 15 full-disk magnetograms were taken by MDI (the Michelson Doppler Imager)
on board SOHO, every 96 minutes (Scherrer et al. 1995). The average magnetic flux density in the MDI
magnetograms needs to be corrected (Berger & Lites 2003; Wang et al. 2003). A factor of 1.6 is used for
this correction (Tu et al. 2005a,b). We selected 15 slices taken respectively from the MDI magnetograms
observed at 15 different times during the SUMER raster scan, with each slice corresponding to a slice of
the SUMER images. The 15 slices were pieced together to reconstruct a new magnetogram with a size of
about 235" x 2000”. Then we carried out cross correlation between the intensity image of N 1v and this
new magnetogram by shifting the magnetogram in the direction of solar Y to obtain an optimal match.
After that we chose the data of the magnetic field from the same area as the SUMER image. The resulting
magnetogram is shown in Figure 4. A varying noise level can be seen in the magnetogram because the
signal-to-noise ratio changes from time to time for the MDI observations, but this will not affect too much
of our results since we are mainly interested in the strong magnetic field fluxes.

3 CORRELATION BETWEEN LARGE PHOTOSPHERIC MAGNETIC FLUXESAND LARGE
RADIANCES/DOPPLER SHIFTS

In Aiouaz et al. (2005), a three-step filtering was carried out for a Lyman continuum intensity image, which
removed the local brightenings and reduced the intensity contrast between the network and internetwork
region. Here we applied a similar technique to the intensity images of transition region lines. For each
intensity image, we first carried out a median filter of the image. The width of the median filter was chosen
as 30", corresponding to the mean size of a network cell. The original intensity image was then divided by
the median filtered one. Finally the resulting image was smoothed over 10", which is the usual accepted
value of the network size at transition region temperatures (Patsourakos et al. 1999).
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Fig.3 Intensity images of N 1v (left) and Ne vii1 (right) in linear scale. The boundary of the coronal hole,
indicated by the blue dashed line, was determined by hand and is almost the same as that used in Aiouaz et
al. (2005). The contours in the left panel represent patches with large N 1v intensity (larger than 6).
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Fig.4 Magnetogram reconstructed by piecing together 15 slices taken respectively from MDI magne-
tograms observed at 15 different times during the SUMER raster scan. The thick blue dashed line outlines
the boundary of the equatorial coronal hole and the surrounding quiet Sun. The red contours represent bright
patches seen on the filtered intensity image (upper) and patches with large shift seen on the dopplergram
(lower) for N 1v (left) and Ne V111 (right). The contour level of the Doppler shift is 10 km s~ (red shift) for
N 1v, and -5 km s~ (blue shift) for Ne viir.
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By using this method, we obtained a filtered intensity image for every emission line. The red contours
in the upper panels of Figure 4 represent patches of strong emission seen on the filtered image for N 1v and
Ne vi11 respectively. We also added contours of Doppler shift of N 1v (larger than 20km s —1) and Ne Vi1
(smaller than -5km s—1) on the magnetogram in the lower two panels of Figure 4 respectively. Here a
positive value of Doppler shift means an inflow and a negative one, an outflow. Since the intensity images
and Dopplergrams of all the six lower-transition-region lines are similar, we only show the results of the
N 1v line in the figure.

It has long been known that the network structure is the dominant feature in the intensity images of
transition region lines. In the upper left panel of Figure 4, the strong intensities and magnetic field concen-
trations coincide well for the lower-transition-region line N 1v in both the coronal hole and the quiet Sun
region: this has been well known for decades. While for the Ne viii line formed in the upper transition
region, this coincidence almost disappears in the coronal hole, while remaining obvious in the quiet Sun
region. This result is consistent with our previous finding that the network structure is still present in the
image of Ne v1i1 in the quiet Sun region and can hardly be discerned in the coronal hole (Tian et al. 2008b).
It suggests that magnetic structures expand more strongly in the coronal hole than in the quiet Sun.

The coincidence between strong red shift of the lower transition region line and magnetic flux concen-
trations is also obvious in the lower left panel of Figure 4. We calculated the correlation coefficient between
the magnetic field strength and the Doppler shift of N 1v, and found that this correlation is weaker than that
between the magnetic field strength and the intensity of N 1v, especially in the coronal hole.

A comparison between the two right panels of Figure 4 reveals a better correlation between the strong
magnetic field strength and the large blue shift of Ne viil. This confirmed our previous results (Tu et
al. 2005a,b). In the quiet Sun region, patches of large Ne V111 blue shift tend to coincide with strong magnetic
fluxes, which indicates outflows locate at lower part of coronal loops. However, we found the patches of
large Ne viii blue shift are larger in size and closer to each other in the coronal hole, revealing strong
outflows to occur at higher layers above the photosphere, that are very likely to be associated with coronal
funnels. This direct comparison suggests that the blue shift of Ne vii1 has different physical implications,
namely an indication of solar wind outflow in the coronal hole (Peter 1999; Stucki et al. 2000; Wilhelm et
al. 2000; Aiouaz et al. 2005; Xia et al. 2003; Hassler et al. 1999; Tu et al. 2005a) and just mass supply to
the coronal loops in the quiet Sun (He et al. 2007; Tian et al. 2008a).

4 EMISSION HEIGHTSOF TRANSITION REGION LINES

In our present study we used the force-free-field extrapolation method as proposed by Seehafer (1978) to
extrapolate the photospheric magnetic field to 40 Mm above the photosphere. We adopted a value of 0 for
the « parameter, corresponding to a potential field. We defined field lines reaching higher than 40 Mm to
be open lines, which were found to be mainly located in the coronal hole. The suitability of this method for
our study can be found in Tu et al. (2005b) and thus will not be addressed here.

Figure 5 shows the absolute magnitudes of the vertical component of magnetic field as extrapolated to
4 Mm (left) and 39 Mm (right). The contours which are taken from Figure 3 represent bright emission of
N 1v. Notice that the coincidence between bright emissions of N 1v and magnetic concentrations is much
better at 4 Mm than at 39 Mm. This can be further demonstrated by using the correlation analysis described
below.

Then we carried out a correlation analysis of the extrapolated magnetic field with the intensity of
each lower transition region line, and with Doppler shift of Ne vi11, following the way described in Tu et
al. (2005a,b). For each of the lines, we calculated the correlation coefficient between the radiance/Doppler
shift and the vertical component of the extrapolated magnetic field (| B . |) at different heights, and identified
the height of maximum correlation coefficient as the correlation height.

The reason why we used the vertical component is that the observed Doppler shift is the line-of-sight
component of the actual shift, and for the equatorial coronal hole and the surrounding quiet Sun region, the
vertical (radial) direction deviated little from the line-of-sight.

Figure 6 shows the height variations of the correlation coefficients of N 1v and Ne vii1 in the coronal
hole and quiet Sun. In the coronal hole region, there are 15018 data points, for which the critical value of
the linear correlation coefficient is 0.02 at 99% confidence, and in the quiet Sun region, there are 51525
data points, for which the critical correlation coefficient is 0.01 at the same confidence. The y-axis on the



738 H. Tian et al.

1Bzl at 4 Mm(Gauss)

1Bzl at 39 Mm(Gauss)

0.2 2.2 4.2

250 250

N
o
o
N
o
o

u
o
a
]

o
(e}
o
o

Y (second of arc)
Y (second of arc)

50 50

0 50 100 150 200 0 50 100 150 200
X (second of arc) X (second of arc)

Fig.5 Extrapolated magnetograms at 4 Mm (left) and 39 Mm (right). The contours taken from Fig. 4 rep-
resent bright emission of N 1v.
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Fig.6 Height variations of the correlation coefficient between the radiance of N 1v and |B.| (left), and
between the blue shift of Ne vii1 and | B | (right), in the coronal hole (upper) and the quiet Sun (lower). The
horizontal bars show the height ranges in which the coefficients are above 95% of the maxima. The y-axis
on the right side of each sub-figure indicates the normalized coefficient.

right side of each sub-figure indicates the normalized coefficient, which is obtained by using the formula
% where C'is the correlation coefficient, C'ryin, and Crax are the minimum and maximum values
of the correlation coefficients in each region. In both the coronal hole and quiet Sun region, the correlation
coefficient clearly increases with the height to a maximum then decreases, this behavior has already been
found for the transition region lines C 1v and Ne viii in Tu et al. (2005a, b). In Figure 6 the horizontal bar
shows the height range in which the coefficient is above 95% of its maximum. The maximum correlation
coefficient, correlation height, and height range in which the coefficient is above 95% of its maximum are
listed in Table 2.

Our result shows that for the six lower-transition-region lines, the correlation heights are 4-5Mm in
the coronal hole, and around 2 Mm in the quiet Sun region. Our result for the quiet Sun region is almost the
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Table2 Correlation Heights and Height Ranges for which the Coefficients are above 95% of the Maxima

lon Coronal hole Quiet Sun
Maximum Correlation Height range in | Maximum Correlation Height range in
correlation height(Mm) which the coef- | correlation height(Mm) which the coef-
coefficient ficient is above | coefficient ficient is above
95% of its maxi- 95% of its maxi-
mum (Mm) mum (Mm)
Ne viii 0.13 9.8 6.9-13.2 0.31 1.8 0.4-34
ov 0.46 48 2.6-7.0 0.40 2.0 0.8-3.7
O 1v (\787.710) | 0.47 4.2 2.3-6.6 0.38 2.0 0.7-3.7
O 1V(A790.199) | 0.46 4.2 2.4-6.7 0.37 2.0 0.6-3.5
Sv 0.52 4.8 2.7-71.2 0.44 2.2 0.9-4.1
N 1v 0.43 4.0 2.2-65 0.36 2.0 0.6-3.5
N1 0.48 4.0 2.2-6.5 0.36 2.0 0.5-3.4
n coronal hole @ quiet sun
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Fig.7 Temperature variations of the correlation heights in both the quiet Sun and the coronal hole. Squares
and diamonds represent the correlation heights and bars indicate the height ranges of emissions.

same as the result for the bright subregion in Marsch et al. (2006), (2-3 Mm), and the correlation height we
derived for the coronal hole is lower than that of the dark subregion (9—-12 Mm) and higher than that of the
bright subregion (2-3 Mm) in the polar coronal hole in Marsch et al. (2006). The latter result seems to be
an average effect of the whole coronal hole. Another possible reason may be that the observed line-of-sight
component of magnetic field is not exactly in the radial direction in polar regions (Marsch et al. 2006),
while in our case the observed magnetic field is almost exactly the radial component since our data refer
to near the equator. This result, together with our previous results for a polar coronal hole (Tu et al. 2005a)
and for the mid-latitude quiet Sun (Tu et al. 2005b), suggests that the transition region in the coronal hole
is higher than in the quiet Sun.

The correlation height and height range of Ne v111 emission show no systematic difference from those of
the lower transition region lines in the quiet Sun, but it is totally different from those of the lower-transition-
region lines in the coronal hole. This difference clearly reflects the different magnetic structures in the quiet
Sun and the coronal hole, and once again supports our conclusion that large blue shift of Ne viii is an
indication of solar wind outflow in the coronal hole (Peter 1999; Stucki et al. 2000; Wilhelm et al. 2000;
Aiouaz et al. 2005; Xia et al. 2003; Hassler et al. 1999; Tu et al. 2005a) and is just mass supply to coronal
loops in the quiet Sun (He et al. 2007; Tian et al. 2008a).
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Fig.8 Dependence of the square root of the radiance of N 1v (left), and the blue shift of Ne vii1 (right)
on |B.| in the coronal hole (upper) and the quiet Sun (lower) at the respective correlation height. The
averages in the bins are indicated by asterisks. The uncertainties show corresponding standard deviations of
the averages. The thick solid lines show linear fits to the averages.

Table 3 Parameters of the linear correlation between radiance and |B.| for the lower-transition-region
lines, and between doppler shift and | B.| for Ne vii1.

lon Coronal hole Quiet Sun
a b a b

Ne Vil 1.79 +£0.37 0.29 £+ 0.08 1.35+0.26 0.16 £+ 0.02
ov 7.15+0.19 0.24 £0.02 9.40 + 0.46 0.23 £ 0.03
O IV (A787.710) 13.45 £ 0.41 0.53 £ 0.04 16.88 +£ 0.81 0.44 + 0.06
O 1v(A790.199) | 19.99 +0.61 0.78 £ 0.05 25.15 £+ 1.22 0.66 £+ 0.08
Sv 9.62 £+ 0.29 0.44 £+ 0.03 12.27 +0.59 0.35 £+ 0.04
N 1v 14.51 £ 0.42 0.47 +0.04 18.31 £ 0.76 0.41 £+ 0.05
N i 3.95+0.13 0.15+0.01 4.88 +£0.18 0.12+0.01

Figure 7 shows the temperature variations of the correlation heights in both the quiet Sun and the
coronal hole region. Since the correlation heights and height ranges of the emissions of the two O 1v lines
are similar, we only present the result of O 1v (A\787.710). The figure clearly confirmed the concept that
plasma with different temperatures can coexist at the same height in the solar transition region (Marsch
et al. 2006). In the upper transition region, we see a much higher emission height in the coronal hole,
indicating a much stronger expansion of the magnetic structure.

We also carried out a linear fit using the formula y = a + bx to the dependence of the square root the
radiance of each middle-transition-region line and the blue shift of Ne vi1i (the reverse value of the normal
Doppler shift) on | B | at the correlation height of each line. The fitting results are presented in Figure 8 and
the fitting parameters are listed in Table 3. We found that, for all the six lower-transition-region lines, the
square root of radiance increases linearly with | B | at the correlation height, which is consistent with the
results in Marsch et al. (2006). We calculated the correlation coefficient between the blue shift of Ne viii
and | B.| at the correlation height in each region, and obtained a value of 0.502 for the coronal hole and
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0.948 for the quiet Sun, respectively. This result suggests that the dependence of the blue shift of Ne viii
on magnetic field is much stronger in the quiet Sun than in the coronal hole. If we assume the magnetic
fluxes increase steadily from the internetwork region to the network center, then the result in the quiet Sun
seems to support our previous finding for the large-blueshift cases in a quiet Sun region that the blue shift
of Ne vii1 increases almost linearly from the internetwork region to the network center (Tian et al. 2008c).

5 CONCLUSIONS

We analyzed a set observed data by SUMER/SOHO in an equatorial coronal hole and the surrounding
quiet Sun region, and determined the emission heights for six lower-transition-region lines and an upper-
transition-region line Ne V111, through a correlation analysis between the radiance or Doppler shiftand | B .|
as extrapolated from the photospheric magnetogram observed by MDI/SOHO to the different heights.

We provided a direct comparison of emission heights of EUV lines in the equatorial coronal hole and
the surrounding quiet Sun. The results show that the magnetic field correlates well with the radiance of
lower-transition-region lines and the blue shift of Ne viil. We found the emission heights of the lower-
transition-region lines are 4-5Mm in the coronal hole and around 2 Mm in the quiet Sun region. In the
quiet Sun region, the correlation height of Ne vii1 is 1.8 Mm, which is not systematically different from
that of a lower-transition-region line. However, the correlation height of Ne vii1 is 9.8 Mm in the coronal
hole.

Our results confirm that plasma with different temperatures can coexist at the same height in the tran-
sition region, and reveal clearly that the outflow of Ne v1i1 is a signature of solar wind in the coronal hole
and is just mass supply to large loops in the quiet Sun.
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